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Abstract. ADHD has an estimated worldwide prevalence of 2-3% and
is one of the most frequent neurodevelopmental disorders. Many prob-
lems in an ADHD-patient’s life arise from the lack of self-management
abilities and social interaction with others. While medication is consid-
ered the most successful treatment for disorders such as ADHD, patients
often seek support in therapeutic sessions with trained therapists. These
aim to strengthen self-awareness of symptoms, emotional self-regulation,
and self-management. However, sharing personal insights can be a burden
for patients while therapists would benefit from understanding important
issues a patient is facing. Our work aims to support therapy for patients
and therapists by providing classification of digital diary entries for ther-
apy sessions while protecting patients privacy. Additionally, we provide
insights into important issues and topics including their affective inter-
pretation for patients suffering from ADHD.
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1 Introduction and Prior Work

One of the most commonly diagnosed psychiatric disorders for children as well as
adolescents is ADHD (Attention-deficit-hyperactivity disorder). The prevalence
of ADHD in adults is around 2-3% [20], often starts in childhood and persists
in up to 50% into adulthood. In recent years an increase in diagnosis, as well
as medication, can be found in multiple sources (e.g., [5,19]). Core symptoms
of the disorder are inattention, hyperactivity, and impulsivity, however patients
suffering from various combinations of these and further symptoms. A common
instrument in ADHD diagnosis and therapy are self-reporting scales (such as
ADHD Rating Scale-IV [12]), which are assessing behavioral patterns that are
considered ADHD risk factors. The use of such self-reporting questionnaires is
often criticized, due to the lack of a missing specific situational context. Patients
need to imagine and predict their own behavior for situations described within
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these assessments. Because of a missing self-awareness of their own reaction,
patients may have difficulties in evaluating oneself objectively or may differ in
their ability for introspection. Previous works have suggested that additional
behavioral data could allow for more objective measures.

In previous works Sonne et al. have suggested a framework to support therapy
with technological on-body systems [17]. Based on this, concepts and systems
have been presented which support self-management of psychological disorders
for young adults unobtrusively in everyday life. Sensing modules are used to
detect symptoms that are relevant by using unobtrusive sensors that contin-
uously collect data about a person’s movements [13,18], heart-rate variability
[7,15], eye-movements [10], contextual parameters e.g., body temperature [4]
and in-situ experience sampling [11]. Current moods and self-evaluations are
queried through a mobile device in appropriate moments.

One other successful measure is the use of retrospective or emotional diaries,
that provide patients a save space to collect and reflect experiences from their
day-to-day life. This method is used often by therapists when applying techniques
from cognitive behavioral therapy (CBT) [3]. Essentially, cognitive behavioral
therapy aims to change behavior by identifying negative and distorted thinking
patterns. These diaries provide a tool for monitoring feelings of anxiety, fear,
hurt, anger, shame, guilt, or sadness as well as when and where these feelings
were experienced. This successful form of therapy emphasizes the link between
thoughts, feelings, and behavior. However, some patients might feel uncomfort-
able to later share their experiences with therapists during sessions due to privacy
reasons and therefore miss the chance to get helpful feedback or learn helpful
strategies specific to their own personal circumstances. At the same time thera-
pists could benefit from these inputs to better understands common issues and
links between subjects, involved people, and emotional interpretations. By gain-
ing knowledge from these experiences, therapists can improve the quality of their
therapy over time.

To address these shortcomings of traditional diaries, we propose a support
system that aims to classify digital diary entries using text-analysis and detect
the overarching topic of a diary entry. In addition, our approach performs a
sentiment analysis of each diary entry to understand how a patient emotionally
rates specific topics personally e.g. social interactions are perceived negatively.
The privacy conserving overarching topics based on a patients personal expe-
riences might be shared with therapists, to provide a basis for future therapy
sessions and indicate changes in topics important to patients for long-term self-
reflection. Patients can decide if or when to share diary entries with therapists.
If only privacy conserving keywords and sentiments are shared, therapists can
use them as a conversation starter during which more details might be revealed
by the patient. The reuse of diary entries in therapy session might additionally
encourage patients to keep engaged in regularly documenting important things,
emotional states and reflections of their day-to-day experiences.

With this work, we aim for two main goals: (1) Discover and understand
important issues and topics including their affective interpretation for patients
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suffering from ADHD or similar neurodevelopmental disorders. (2) Support ther-
apy for patients and therapists by providing in-situ classification of digital diary
entries collected to provide important topics for therapy sessions. To understand
important topics and gather create a dataset for training a classification model,
we collected posts from an active online community. Following we describe our
approach.

2 Crowdsourcing Topics for Classification

2.1 Data Mining and Analysis

We collected our initial dataset from the ADHD Subreddit!, which is an active com-
munity, of at that time about 221,382 users, to share and discuss topics related to
ADHD. We collected the 1000 TOP posts of ALL times (upvoted by users of the
community). After cleaning up and removing duplicates, the dataset resulted in
998 posts from 823 different authors. We choose the ADHD Subreddit community
because of two main attributes: First, similar to diary entries, posts vary in length
and grade of detail and second, users often share important subjects with the com-
munity in a way they would collect them in a diary, such as:

[..]T feel nervous or numb mostly and can’t think clearly most of the time.
I don’t particularly feel like a pleasant human being and I have quite a
disheveled past. Luckily nothing too horrible but just many many SO many
fuck ups and experiences and broken relationships that feel like a weight
on my back. [..]

We first aimed to retrieve overarching topics from the dataset itself. Based
on initial topics from a literature review e.g. problems at work or with loved
ones, we used techniques from NLP to understand the data corpus. We analyzed
the existing overall text corpus with regard to word frequencies, clustering as
well as term correlations. After cleaning the dataset and removing stop words
(english and custom ADHD-related ones), we used stemming and removed white
spaces. Based on the corpus we created a tf-idf weighted document-term-matrix
[14] with 10% sparse terms removed as basis for further analysis. While we
analyzed the corpus with different clustering algorithms (hierarchical clustering,
K-means), we could not find any particular interesting correlations. However, we
will continue our analysis in the near future, in cooperation with experts from
the medical domain to further search for extending topics of interest.

2.2 Classification of Posts

We included three experts (therapists, medical professionals) to help us identify
general important topics and issues that often or regularly occur during therapy
sessions with patients and are known from professional literature. Together with

! (https://www.reddit.com/r/ADHD/; last retrieved: 06-28-2018).
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Fig. 1. Snapshot of the crowdsourcing website, to categorize social media postings into
one of fifteen overarching topics.

the experts, we identified 14 topics (listed in Fig.2a for the following three
overarching areas: ADHD-related, Work, Private Life/Social Skills. The topics
for relationships and planning occur in two areas, for private and professional
life accordingly.

In a next step, we built a website to crowdsource the mappings of overarching
topics for each entry of our dataset to retrieve labels for a later model training
(shown in Fig.1). The website was accessible for crowd-workers hired through
a crowdsourcing service (We hired 100 crowd-workers through https://www.
prolific.ac/ with an incentive of about $8/hour) Workers were presented one
post at a time, which they had to read and choose an appropriate overarching
topic for. Each categorization tasks consisted of 10 posts and took about 15—
30 min per worker. We asked workers to categorize by 1 in 14 categorize or
select other if none of the available options seemed appropriate. Figure 2a shows
the frequencies of topics identified as a result of the crowdsourcing task for our
dataset.

3 Analysis and Model

3.1 Sentiment-Analysis of Topics

To understand affective interpretation of topics, we used sentiment analysis for
our dataset. Each post (categorized into one of the overarching topics by the
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crowd-workers) was analyzed using the VADER Sentiment Analysis?. VADER
is a lexicon and rule-based sentiment tool, specifically trained to classify senti-
ments expressed in social media [6]. It was already successfully used for similar
data in related research [1,16]. The resulting overall distribution of sentiments
(53.9% positive, 13.1% neutral, 33.0% negative) is shown in Fig. 2b. The median
associated sentiment for each separate topic is represented in Fig. 3. For six top-
ics the median classification is neutral, nine correspond to positive, none of the
topics is mostly associated with negative feelings. Similar to a bias towards a
positive sentiment of the posts from Reddit, we expect a positive bias in later
diary entries as these are a way to get help by outsiders (either other users or a
therapist using the diaries).

Sentiment Distribution of Posts

Topic Count Total: 998
comorbidity 15 S .
education 98 ©
emotions 104
focus 147 ” § 4
hyperactivity 49 5
inbodyment 85 £ °
interests 40 5 21
medication 82 % 537
planning_private 74 5 o
planning_work 43 -g IS
relationship_private 79 3 20
relationship_work 10 o
rewards 22 27
therapy 40 1
other 110 o J
Total 998 negative neutral positive
(a) Distribution of Sentiments
topics. (b) Distribution of sentiments.

Fig. 2. Distribution of topics classified from our sourced reddit postings and distribu-
tion of sentiments (positive, neutral, negative) over all analyzed posts.

3.2 Model-Training for Classification

For training the model to classify in-situ diary entries from patients into over-
arching topics we used a supervised learning approach. As a basis, we used our
existing dataset including 9,647 words and the fifteen topic labels created by the
crowd-workers. Following we used the FastText [9] library to train our classifi-
cation model as it proofed to be well suited in related research [2,8]. We trained
our model for 500 epochs with a learning rate of 0.5. For testing the trained
model we used 20% of our dataset per topic for testing (to prevent underrep-
resented topics). As we are currently implementing the mobile application for

2 (https://github.com/cjhutto/vaderSentiment; last retrieved 01-07-2018).
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in-situ diaries, we have not yet evaluated the overall performance of the model
with regard to classification accuracy. However, our first tests showed a precision
of 0.215 as well as a recall of 0.215 (performs better than pure chance =0.06).
While the classification accuracy can be further improved e.g. by using n-grams
to set words into context, we see first promising results in our current results.
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Fig. 3. Overarching topics and their associated sentiment (entries colored in green
represent a positive sentiment, while yellow related to neutral). (Color figure online)

4 Next Steps and Research Agenda

Our next step is to experiment further with learning approaches for diary entry
classification. Furthermore, we are currently completing the development of the
first digital diary prototype for Android, while also planning a field test with
patients. In this field evaluation, we want to test our Application (see digital
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diary for patients Fig.4a and overview screen including classified entries with
sentiment rating for therapists Fig.4b) against a baseline analog diary during
therapy sessions. We aim to better understand (1) how patients and therapists
can be supported during therapy sessions, (2) how good our approach performs
in comparison with existing techniques and (3) how we can improve our classi-
fication model to be further generalized for real-life applications with patients
suffering from other neurodevelopmental disorders.
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(a) Diary-application for patients. (b) Application for therapists.

Fig. 4. Using a smartphone application, the patients are enabled to keep a diary. Each
entry can be hidden from the therapist, if the patient is choosing to do so. Therapists
can see diary entries for each patient individually. Each entry is presented including (a)
keywords, (b) a color coded sentiment (red = negative, green = positive, grey = neutral)
as well as the entries text, if not hidden by the patient. (Color figure online)
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